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THE INTRODUCTION OF “FORBIDDEN” A~LITUD~S 
WHEN CALCULATING THE WAVE RESISTANCE OF A SHIP? 

E. L. AMROMIN, A. N. LORDKIPANIDZE and Yu. S. TIMOSHIN 

St Petersburg 

(Received 15 March 1991) 

“Forbidden” values of the amp~tudes are introduced into the Havelock formula, used in the linear theory 

of ship waves, which associates the wave resistance with their amplitudes. As a result, it is possible to 

achieve satisfactory agreement between calcaulation and experiment for various shapes of vessels. 

THE WAVE resistance of a vessel depends on the amplitude of the ship waves caused by the vessel. Linear 
theory assumes that these amplitudes are directly proportional to the intensities of the wave-forming features 
by which bodies moving close to the free surface are replaced and this enables one to obtain relatively simple 
formulas for calculating the wave resistance of a ship R, [l, 21. However, as the above-mentioned intensities 
are increased, the experimental dependences for the amplitudes deviate so strongly from linear dependences 
that the divergence between theory [l, 31 and experiment for R, turns out to be striking. Attempts to solve the 
non-linear spatial problem of ship waves both by expanding the flow characteristics in series in powers of a 
small parameter [4] as well as by using ch~acteristi~ dis~buted over its ~unda~es do not yield satisfactory 
results in the calculation of R, for ships of different shapes and different values of the Froude number, Fr, in 
spite of the considerable computer resources which are used. 

In this situation, it is reasonable to appeal to what is probably the simplest method of partially taking 
non-linearity into account, that is, to the introduction of limiting or “forbidden” amplitudes. Limiting 
amplitudes, which cannot be exceeded for any intensity of the perturbation source, are encountered in various 
branches of mechanics and physics. 

t Priki. Mat. Mekh. Vol. 56, No. 1, pp. 16>167,1992. 
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In introducing “forbidden” amplitudes it is assumed that waves of any amplitude, including the limiting 
amplitude, satisfy linear theory; but subsequently the amplitude and, consequently, the energy transferred by 
the waves reach the limiting values. The theory of free planar surface waves, for example, specifies the 
amplitude of Stokes waves [2] with a sharp vertex as the limiting amplitude and experiments ([S], for example) 
agree with this. In this paper, the introduction of forbidden amplitudes and energies into the calculation of the 
wave resistance of a ship is described and demonstrated using vessels of different shapes as examples. 

In the theory of ship waves, the wave resistance of a vessel is expressed in terms of their amplitudes. The 
elevation of the free surface q in linear theory is given by the formula 

tl = ug-%p/az (1) 

Here, g is the acceleration due to gravity, U is the velocity of the motion of the vessel along the x-axis and the 
potential cp caused by the velocity of the fluid is the solution of the boundary-value problem 

A0 = 0, v@q/8z’ -i- g@/dh Irco = 0; G@laN ID = U (N. z); lim 1 q~ ( = 0 (2) 
x-b-al 

Here, N is the normal to the surface of the vessel D on which a no-penetration condition is satisfied and the 
z-axis is directed upwards. The analytical solution of problem (2) was obtained by Havelock for a system of 
characteristics specified by an intensity Q(x, z), distributed on a rectangle in they = 0 plane and the expression 
for their wave resistance has the form [2]: 

n/2 

' R,=npU' 
s 

F(R)cos~O de (3) 
0 

The function F is the square of the amplitude of the waves, 8 is the angle between a point of the wave wake 
and the diametral plane of the ship and p is the density of sater. Formula (3) can be reduced to the form 

LIB 0 

H (k, 0) = 5 j Q(z, a) 6b+ik=coee dz dt (4) 
-L/a -T 

where H is the Kochin function, v+gU -‘, L, B and T are the length, width and draft of the ship and 
k = VCOS-~~~. As is usual in linear theory, we assume that 

-Q = 2U (N, z) (5) 

If relation (5) is further simplified, neglecting the square of the derivatives of the ordinates of the hullf, then 

Q = 2U8f/az (6) 

and (4) reduces to the extensively used Mitchell formula [l, 31, the generally accepted dimensionless version of 
which has the form 

2n’ 
c.=tl) IH(ktWl' 
w- puss =nS cs(u)du, a(o)= II'L' 

0 

(7) 

Here S is the area of the wetted surface of the ship, u = tge, Fr = (Lv)-“* and the function u determines the 
relative fraction of the energy which is transferred by linear waves behind the ship. The calculation of c, using 
formula (7) for a single value of Fr using the method in [6] takes a few seconds on a personal computer. The 
form of the function cr in the case of a Wigley vessel with an LIB ratio of 10 and an overall fullness (with a ratio 
of the water displacement to the LBT product) 6 = 0.44 is shown in Fig. 1 for two different cases: when 
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fr 

FIG. 2. 

Fr = 0.2, energy is predominantly transferred by transverse waves in the wake of the ship, while when Fr = 0.3 
their interference is favourable and energy is predominantly transferred by diverging waves which correspond 
to values of tl close to the Kelvin angle. 

The unsatisfactory agreement between calculations using formulas (6) and (7) and experiment was pointed 
out a long time ago in [I]. Figures 2 and 3 illustrate the present position of work involving calculations of c, . 

The experimental dependences of the wave resistance coefficient c, on Fr for three models of the 60th series [3] 
which are the most frequently used as standards are shown in Fig. 2: for 6 = 0.6 and LIB = 7.5 (the open 
circles), 6 = 0.7 and L/B = 7 (solid circles) and for 6 = 0.8 and L/B = 6.5 (the small crosses). For all models, 
B/T = 2.5. The results of calculations using the basic formula of linear theory, that is, Mitchell’s formula, are 
shown by the dashed lines. The experimental points depicted by open circles in Fig. 3 refer to the Wigley model 
[3] with analytical contours while the experimental points depicted by the solid circles refer to a modern 
container carrier with LIB = 4.8, 6 = 0.55 and BIT = 3.5. The broken lines in this figure are for a calculation 
using formulas (6) and (7) and the values of c, which are given by such a calculation for this container carrier 
are so large that they exceed 0.002 even when Fr = 0.15. 

The range of Froude numbers, which are considered in the examples and are typical of commercial ships, is 
distinguished by the fact that more than a single wavelength A of the ship waves is now piled up within the limits 

I : ‘1 2 
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FIG. 3. 
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of the extension of the hull. Wave interference effects therefore turn out to be very substantial. The linear 
theory, as the results of an exact numerical solution of elementary planar problems [7] show, can appreciably 
distort these effects, mainly by significantly increasing (by a factor of two) the amplitudes of the waves even for 
fixed intensities of the characteristics. 

In non-linear theory, at present it is only sufficiently reliable to determine just the phases of the waves while 
the values of c, are determined with large errors by means of lengthy calculations. This is apparently because, 
in direct numerical methods, the joining of the local non-linear solutions with the asymptotic solutions for the 
distant wave wake has still not been realized on account of the fact that the law of conservation of energy is 
apparently not satisfied. The small-parameter method [4] also led to completely paradoxical results (see the 
dashed curve in Fig. 2). 

The facts which have been mentioned above suggest the idea of maintaining the structure of formula (6) 
while so correcting the function u in it so as to take account of the non-linearity of the interference of the ship 
waves. The simplest way of making this correction, which does not necessitate the direct solution of non-linear 
problems in potential theory, is to introduce “forbidden” amplitudes into (6) or, more accurately, their limiting 
ratios to A. It is well known [2] that this ratio depends slightly on A, that is, on Fr. It is therefore natural to 
introduce constraints precisely on the relative energy u(e). Instead of (7), it is necessary to use the function 

where the number A,,, must be independent both of the shape of the ship and of the Froude number. The 
correction (8) of the function (6) is shown in Fig. 1 by the dashed line. Not having the means to determine A, 
theoretically, we chose it on the basis of a numerical experiment involving a single example and checked it on 
many others. The results of the checks, the solid lines in Figs 2 and 3, were obtained using formulas (4), (6) and 
(8) for one and the same value A, = 0.05. The results of linear theory for a contemporary bulk carrier with 
6 = 0.74, BIT = 3.8 and LIB = 4.3 are in such poor agreement with experiment that it is difficult to compare 
them in the graph: for values of Fr = 0.13,0.14,0.15,0.16,0.17,0.18,0.19 and 0.20, for experimental values of 
the quantity ldSL-2c, of 0.04, 0.05, 0.06, 0.09, 0.15, 0.23, 0.34 and 0.52, linear theory gave the values 4.51, 
4.57,5.30,5.24,6.66, 6.91,7.50 and 9.43 while the calculation with “forbidden” amplitudes gave 0.035,0.050, 
0.074,0.091,0.121,0.165,0.210and0.252. 

While there is good agreement between the calculated and experimental values of c, , which is ensured by 
the modification proposed here of the formulae of linear theory, there is, of course, still not complete 
agreement. Complete agreement would not be expected: in fact, the non-lineaity of the initial problem has 
been taken account of in terms of just a single interdiction (8). The present differences in c, are explicable. For 
instance, the fact that the calculated values of c, for a Wigley vessel are low when Fr = 0.3 is associated with 
the fact that a transverse bow wave occurs at Fr = 0.3 with an opposite phase to the stern wave and, in such 
cases, as is well known from planar theory [7], linear interference reduces R, . The pronounced increase in the 
experimental relations c, (Fr) when Fr is increased for vessels with 620.7, beyond which the solid lines in 
Fig. 2 do not keep up, is associated with the fact that, in traditional experimental methods for determining R, 
using the towing resistance, the models do not distinguish between what is strictly the wave resistance (the 
amounts of energy consumed in the elastic oscillations of water) and the wavebreaking resistance, which is not 
described within the framework of potential theory, the friction of which is greater, the higher the value of Fr 
and the blunter the waterline of the vessel. We note that, from a practical point of view, the agreement between 
the calculation using formula (8) and experiment is sufficient since, on account of wavebreaking, vessels are not 
used in practice when Fr>O.6-6/2 ([3], p. 397). Meanwhile, even in these interesting practical cases, the 
introduction of “forbidden” amplitudes cannot provide an answer to the question regarding the shape of the 
streamlines and completely replace non-linear theory although, in these cases, it is already possible to speak 
about the controlling role of formula (8) which is similar, let us say, to the role of the Squire-Young formula in 
the theory of separated flows [8]. 

In concluding, we note that what has been described here is not the first attempt to achieve an improvement 
in the agreement between linear theory and experiment by means of a constraint of a Kochin function as Inoui 
had already laid the foundations of this [3]. However, he did not succeed in revealing the correct substantiation 
of such corrections. For example, it is difficult to analyse a recent attempt [9] to explain the divergence between 
linear theory and experiment by the failure to take account of the effect of viscosity since, in [9], the narrowing 
of the displacement body in the near wake which reduces its cross-sectional areas by a factor of three to four has 
been ignored. 

We thank A. N. Ivanov, V. G. Mishkevich and G. Yu. Stepanov for discussing the results, and S. S. 
Grigoryan for the useful collaboration which arose when we became acquainted with his paper [lo] in which a 
similar method of estimation was applied to soil friction. 
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A generalization of an asymptotic method, which has been developed earlier [l, 21 as applied to elastic 

materials, to the case of viscoelastic anisotropic media is proposed. The problem of the transmission of a 

load to viswelastic orthotropic bodies by elastic elements, which is associated with the adhesive strength of 

composite fibre materials, is investigated. 

1. CONSIDER a viscoelastic body consisting of a material which is orthotropic both with respect to its elastic and 
its viscoelastic properties. The principal directions of anisotropy coincide with the Cartesian axes of the x, y, 
and z coordinates. In this case, the relationships between the strains and the stresses can be written in the 
following manner: 

i - 1,2,3 
0 

t 

K, (t - r) “,J dr) 

(i = 2. j = 3, n = 1; i = 1, j = 3, n = 2; 1 = 1, j = 2, n = 3) 

0.1) 
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